Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shen-Cai Hu,^a* Li Mei,^b Ji-Gang Wang^a and Chang-Hong Liu^b*

^aDepartment of Biological and Pharmaceutical Engineering, Wuhan Polytechnical University, Wuhan 430023, People's Republic of China, and ^bSchool of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: hushec@163.com, chliu@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.009 Å R factor = 0.074 wR factor = 0.239 Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. IFB-Lactam-1, a natural compound with anti-Gloeosporium kaki Hori activity

The title compound, IFB-Lactam-1 (systematic name: 2,15dihydroxy-7-methyl-6-azabicyclo[11.3.0]hexadec-3-en-5-one), $C_{16}H_{27}NO_3$, is a newly characterized natural anti-Gloeosporium kaki Hori compound. It was isolated from the EtOAc extract of the fermentation broth of an endophytic fungus *Trichoderma sp.* from cabbage. It is a 13-membered macrocyclic lactam which shares a two-atom edge with a cyclopentanol ring.

Comment

In our investigations on secondary metabolites antagonistic against vegetable pathogens from endophytic fungi which live in the healthy tissues of host plants (Monnanda *et al.*, 2005) and are commonly recognized as a rich source of secondary metabolites (Evelyn *et al.*, 2004), the title compound IFB-Lactam-1, (I), was isolated from the EtOAc extract of the fermentation broth of an endophytic fungus *Trichoderma sp.* from cabbage.

IFB-Lactam-1 is a 13-membered macrocyclic lactam, which shares one bond with a cyclopentanol ring. The molecular structure of (I) is shown in Fig. 1. In the lactam skeleton, the C=C double bond is conjugated with the carbonyl bond. There is a hydroxyl group in the α -position of the conjugated system. The cyclopentanol ring is in an envelope conformation. Atoms C5, C6, C8, and C9 constitute one distorted plane of the envelope, with a deviation of 0.082 (9) Å. Atom C7 is the cover of the envelope, and it is 0.554 (7) Å above the envelope plane.

The hydroxyl groups in (I) participate in the formation of intermolecular hydrogen bonds, which link the molecules to form a one-dimensional chain along the a axis (see Fig. 2).

Experimental

The endophytic fungus *Trichoderma sp.*, was cultured in Czapedox media at 298 K for 10 d. The fermentation broth (100 l) was extracted three times with ethyl acetate. The EtOAc was evaporated *in vacuo* to give a brown residue (18 g). The extract was divided into eight fractions by column chromatography on silica gel (gradient from pure chloroform to pure methanol). Fraction 3 (4.3 g) was rechromatographed on silica gel CC with the same range of solvent mixtures, to

© 2006 International Union of Crystallography All rights reserved Received 19 October 2006 Accepted 17 November 2006 give six fractions. Fraction 3-2 (1.0 g) was then subjected to gel filtration on Sephadex LH-20 with chloroform-methanol (1:1), followed by recrystallization from methanol to give compound (I) (5 mg).

Z = 4

 $D_x = 1.034 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

Prism, colourless

 $0.27 \times 0.23 \times 0.20 \text{ mm}$

9063 measured reflections

1859 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.1522P)^2]$

+ 1.1271P] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

1583 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $\begin{aligned} R_{\rm int} &= 0.038\\ \theta_{\rm max} &= 25.5^\circ \end{aligned}$

Crystal data

 $C_{16}H_{27}NO_3$ $M_r = 281.39$ Orthorhombic, $P2_12_12_1$ a = 7.4001 (9) Å b = 12.9986 (13) Å c = 18.860 (2) Å V = 1814.1 (4) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.961, T_{\max} = 0.988$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.239$ S = 1.041859 reflections 185 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots O4^{i}$ $O4-H4A\cdots O3^{ii}$	0.82 0.82	1.98 2.45	2.785 (6) 3.257 (7)	167 167
0. 11.11 00	0.02		01207 (7)	107

Symmetry codes: (i) x - 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

All the H atoms were positioned geometrically and constrained to ride on their parent atoms, with O-H = 0.82, N-H = 0.86 and C-H = 0.93-0.98 Å. They were treated as riding atoms, with $U_{\rm iso}(H) = 1.2U_{\rm eq}(C,N)$ or $1.5U_{\rm eq}(O)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1997); software used to prepare material for publication: *SHELXTL*.

References

Evelyn, A. A., Koichi, T., Yasunori, A., Nitaro, M., Hajime, A., Motoichiro, K. & Hiroshi, O. (2004). J. Gen. Plant Pathol. 70, 139–142.

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Packing diagram of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

Monnanda, S. N., Basavanna, M., Mysore, V. T., Harischandra, S. P., Ven, S., Kukkundur, R. K. & Huntrike, S. S. (2005). *Mycopathologia*, **159**, 245–249.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.